Facebook Twitter
Drucken
17. August 2016 | Dipl.-Met. Marcus Beyer

Warum es auf dem Weg zum Gipfel immer kälter wird

Warum es auf dem Weg zum Gipfel immer kälter wird

Datum 17.08.2016

Im Bergland ist es immer kälter als im Flachland. Dass dem so ist, weiß jeder. Aber warum eigentlich? Mehr dazu im heutigen Tagesthema.

Wer kennt das nicht? Ein heißer Sommertag in den Alpentälern. Was würde da besser passen als eine kleine Wanderung zu einen der Gipfel. Wie wäre es beispielsweise mit der Zugspitze. Froh und lustig zieht man los, nimmt aber weder dicke Jacke, noch Schal und Mütze mit . . . es ist ja schließlich angenehm warm draußen.


Temperaturgradient der Atmosphäre
Temperaturgradient der Atmosphäre


Doch was für die Politik gilt, lässt sich auch beim Wetter wiederfinden: Je höher man hinauf steigt, desto dünner wird die Luft und desto eisiger bläst einem der Wind entgegen. Auf der Zugspitze sind es aktuell (09 Uhr) 2 Grad bei einem böigen Nordwind. Hat man nun aus lauter Übermut die Utensilien zur Kältebekämpfung vergessen, dann sollte es einen nicht wundern, wenn man schnell wieder den Rückweg ins "Flachland" antreten muss.

Doch warum ist es in größeren Höhen überhaupt kälter, als in tieferen Lagen? Ganz naiv käme man auf die Idee zu vermuten, es würde mit der Höhe wärmer werden, da man sich ja der Sonne annähert. Natürlich wird es prinzipiell wärmer, je mehr man dem Himmelsgestirn näher kommt. Die Sonne ist aber 150 000 000 km weit entfernt, während die höchsten Berge eine Höhe von gerade einmal knapp 9 km haben. Man merkt also schnell, dass diese Argumentation sehr an den Haaren herbeigezogen ist.

Es gibt noch eine andere Überlegung, bei der erneut die Sonne ins Spiel kommt. Ein Teil der von ihr ausgesendeten kurzwelligen Strahlung erreicht den Erdboden und wird von ihm aufgenommen (absorbiert). Gleichzeitig sendet (emittiert) der Erdboden langwellige Wärmestrahlung aus. Diese Strahlung sorgt für eine Erwärmung der unteren Luftschichten. Vor allem an heißen Sommertagen kann man diese Strahlung sogar als eine Art Flimmern über asphaltierten Straßen erkennen.

Aber ist das der eigentliche Grund dafür, dass die Luft mit der Höhe kälter wird? Würde man dieser Argumentation folgen, dann müsste es auf den Bergen ebenfalls warm werden. Schließlich wird auch dort kurzwellige in langwellige Strahlung umgewandelt. Natürlich hat der beschriebene Prozess einen gewissen Einfluss auf die Temperatur am Erdboden. Wäre dem nicht so, würde es zwischen Tag und Nacht keine Temperaturunterschiede geben. Als Antwort auf die Ausgangsfrage, ist diese Begründung allerdings nicht verwendbar.

Was ist denn nun aber die eigentliche Ursache? Es hat gar nichts mit der Sonne zu tun, sondern vielmehr mit der physikalischen Definition von Temperatur. Die Luft besteht aus kleinen Teilchen, die sich bewegen. Durch die Bewegung kommt es zu Reibung und Zusammenstößen zwischen den Teilchen. Das führt zur Erzeugung von Wärme. Je schneller sich die Teilchen bewegen, desto höher ist demnach die Temperatur.

Nun muss man noch bedenken, dass die Masse an Luft einen gewissen Druck auf uns alle ausübt. Und da liegt die Lösung des Rätsels. Der Druck nimmt nämlich mit der Höhe ab. Dies ist recht verständlich, schließlich lässt man so einige Luftmoleküle unter sich, wenn man auf einen Berg steigt.

Soweit so gut, aber was hat das nun mit der Temperatur zu tun? Ganz einfach: Je mehr Druck ausgeübt wird, desto schneller bewegen sich die Teilchen. Eine schnellere Bewegung führt aber wiederum zu einer höheren Temperatur und damit schließt sich der Kreis. Man kennt dies, wenn man bei einer Luftpumpe drückt. Dann wird diese bekanntlich wärmer.

Also: Da der Luftdruck mit der Höhe abnimmt, verlangsamt sich die Teilchenbewegung und damit nimmt die Temperatur ab

Dies ist die einfache Begründung und zumindest für die untere Schicht der Atmosphäre (Troposphäre) ist dies auch tatsächlich so. Meist nimmt dort die Temperatur mit 6 bis 10 Grad pro Kilometer ab. Geht man allerdings in noch höhere Luftschichten, kommen andere Prozesse zum Tragen, die wiederum zu einer Erwärmung mit der Höhe führen. Darauf soll aber an dieser Stelle nicht näher eingegangen werden. Auch nicht auf die im Winter bei Hochdruck vorliegende Sonderform: Die Inversion. Diese führt nämlich dazu, dass es auf den Bergen wärmer als im Flachland ist.



© Deutscher Wetterdienst

Themenarchiv:

15.12. - Was tun an grauen Tagen?

14.12. - Von Meteoren, Hochnebel, Inversionen und optimaler Himmelssicht

13.12. - Novembergrau oder Dezembergrau?

12.12. - Extreme Dezember: 2010 und 2015 im Vergleich

11.12. - Hoch ELLINOR bringt graue Tristesse

10.12. - Ein erster Griff in die Spekulatiuskiste

09.12. - Die heiße Kugel

08.12. - Vom Winter keine Spur!

07.12. - Ein Sonntag mit Film und Fernsehen

06.12. - Jahresrückblick 2025 | Teil 2

05.12. - Jahresrückblick 2025 | Teil 1

04.12. - Tiefdruckeinfluss über dem östlichen Mittelmeer

03.12. - Deutschlandwetter im Herbst 2025

02.12. - Deutschlandwetter im November 2025

01.12. - Nebel im Winterhalbjahr

30.11. - Milder Winterstart

29.11. - Die atlantische Hurrikansaison 2025 - Ein Rückblick

28.11. - Glatteisgefahr im Südosten Deutschlands

27.11. - Wenn natürlich nicht mehr ausreicht: Die Kunstschneeproduktion

26.11. - Vom Kaltlufteinbruch bis zur Westdrift – Wie sich das Wetter zu Beginn der Weihnachtszeit in den letzten zehn Jahren präsentierte.

25.11. - In Gummistiefeln durch das Winterwetter

24.11. - Vor 20 Jahren: Das Münsterländer Schneechaos

23.11. - Erste Glatteislage der Saison

22.11. - Die Kugel der Mitte

21.11. - Lesen bildet

20.11. - Eisige Nächte am Wochenende

19.11. - Wenn es so kräftig regnet, dass es schneit: Die Niederschlagsabkühlung!

18.11. - Wintereinbruch – oder doch nur spätherbstliches „Geflöckel“?

17.11. - Begrifflichkeiten und Geografie im Wetterbericht

16.11. - Ein gestörter Polarwirbel ist nicht alles